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MotivationMotivation

• Grid resources (peers) provide services

• Processes composed of service invocations

• Dependencies between services → transactional guarantees needed
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Concurrency Control & Recovery in the GridConcurrency Control & Recovery in the Grid

• Composite services executed as multi-level transactions 

• No central coordinator

• Semantic concurrency control & recovery
– Service level instead of data level
– Conflicts defined regarding service semantics

• Long-running transactions (workflows/processes)
– Non-blocking
– Partial rollback

Conflict Detection Conflict Detection 
& Handling& Handling

Service CompensationService Compensation
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Distributed Concurrency ControlDistributed Concurrency Control

• Locking Approaches
– 2PL/2PC combined with distributed deadlock detection (or timeout)
→ Problem: blocking protocol 

• Certifier Approaches
– Failure detection postponed until commit time
→ Problem: many rollbacks (expensive in case of long-running transactions) 

• Timestamp Ordering Approaches
– Entrance to system determines correct execution order on peers 
→ Problem: many unnecessary rollbacks

• Serialization Graph Approaches
→ Problem: cycle detection & cascading rollbacks
→ But costs of cycle detection not significant w.r.t. long-running transactions
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Our ApproachOur Approach

Observation:
• A transaction may only commit if all transactions on which it depends have 

committed

Approach: Decentralize serialization graph testing 
• Equip transactions with necessary dependency knowledge such they can decide to 

commit without a global coordinator 

• Transactions require knowledge about
– directly preordered transactions  

→ from peers (to ensure correctness)
– transitively dependent transactions  

→ from transactions (to detect cyclic dependencies)
• Local, incomplete, not necessarily up-to-date knowledge
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System ModelSystem Model
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Preventing Incorrect SchedulesPreventing Incorrect Schedules

Peer detects &
informs about
conflict

Rule: Transaction must not commit before all preordered transactions have committed

⇒ Transaction receives relevant conflicts as part of service invocation reply

T1 must wait for 
the commit of T2!

Non-serializable
schedules cannot 
occur!
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Detecting Cyclic Waiting SituationsDetecting Cyclic Waiting Situations

Observation: Cyclic waiting situations cannot be detected with local knowledge only

⇒ Push paths to preordered transactions
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Solving Cyclic Waiting SituationsSolving Cyclic Waiting Situations

Rule: If cycle detected, rollback partially until cycle disappears and then restart

⇒ Peer determines conflicting service invocations to be compensated
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Experiments: DSGT vs. S2PLExperiments: DSGT vs. S2PL

Based on IBM WebSphere

Five hosts each always running 20 active transactions 

Transactions consists of 8-12 service invocations

Service durations 2 seconds

Restart delay 0-20 seconds
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Conclusions and OutlookConclusions and Outlook

• Decentralized Concurrency Control & Recovery
– Based on “optimistic” serialization graph testing
– For service-oriented, peer-to-peer systems

• Results
– Global correctness relying only on local, incomplete knowledge
– Partial rollback reduces costs of cascading aborts
– DSGT useful for long-running transactions (outperforms 2PL)

• Outlook
– Self-adapting protocols
– Grid partitioning 
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