
How can we support Grid Transactions?How can we support Grid Transactions?

Towards PeerTowards Peer--toto--Peer Transaction ProcessingPeer Transaction Processing

Can Can TürkerTürker, Klaus Haller, , Klaus Haller, ChristophChristoph Schuler, HansSchuler, Hans--JörgJörg SchekSchek

ETH ETH ZurichZurich
Institute of Information SystemsInstitute of Information Systems

Database Research GroupDatabase Research Group

tuerker@inf.ethz.chtuerker@inf.ethz.ch

Can Türker: Towards P2P Transaction Processing 2

MotivationMotivation

• Grid resources (peers) provide services

• Processes composed of service invocations

• Dependencies between services → transactional guarantees needed

ss11

ss22

ss33
s2 s3s1TT11

s1s3TT22

s1 s2
Service Interfaces

Service Instances
(Executed as Local Transactions)

… sn

…s2s1 sn

Process

Process

Can Türker: Towards P2P Transaction Processing 3

Concurrency Control & Recovery in the GridConcurrency Control & Recovery in the Grid

• Composite services executed as multi-level transactions

• No central coordinator

• Semantic concurrency control & recovery
– Service level instead of data level
– Conflicts defined regarding service semantics

• Long-running transactions (workflows/processes)
– Non-blocking
– Partial rollback

Conflict Detection Conflict Detection
& Handling& Handling

Service CompensationService Compensation

Where &
How?

Can Türker: Towards P2P Transaction Processing 4

Distributed Concurrency ControlDistributed Concurrency Control

• Locking Approaches
– 2PL/2PC combined with distributed deadlock detection (or timeout)
→ Problem: blocking protocol

• Certifier Approaches
– Failure detection postponed until commit time
→ Problem: many rollbacks (expensive in case of long-running transactions)

• Timestamp Ordering Approaches
– Entrance to system determines correct execution order on peers
→ Problem: many unnecessary rollbacks

• Serialization Graph Approaches
→ Problem: cycle detection & cascading rollbacks
→ But costs of cycle detection not significant w.r.t. long-running transactions

Can Türker: Towards P2P Transaction Processing 5

Our ApproachOur Approach

Observation:
• A transaction may only commit if all transactions on which it depends have

committed

Approach: Decentralize serialization graph testing
• Equip transactions with necessary dependency knowledge such they can decide to

commit without a global coordinator

• Transactions require knowledge about
– directly preordered transactions

→ from peers (to ensure correctness)
– transitively dependent transactions

→ from transactions (to detect cyclic dependencies)
• Local, incomplete, not necessarily up-to-date knowledge

Can Türker: Towards P2P Transaction Processing 6

System ModelSystem Model

TT11

s1 s4s2TT11 s4s3TT22

TT22 TT22

<(s3, T2), (s1, T1)><(s3, T2), (s1, T1)> Local conflict log

Local serialization graph

Transaction descriptionTransactions

Peers Services Services

Conflict Matrix

s1
s2
s3

s1
–
–
X

s2
–
X
–

s3
X
X
–

Log

s1 s2 s3 s1- s2- s3-

s2 T1

s3 T2

s1 T1

Conflict Matrix

s4
s5
s6

s4
X
–
–

s5
–
X
–

s6
–
–
X s4 T1

Log

s4 s5 s6 s4- s5- s6-

Can Türker: Towards P2P Transaction Processing 7

Preventing Incorrect SchedulesPreventing Incorrect Schedules

Peer detects &
informs about
conflict

Rule: Transaction must not commit before all preordered transactions have committed

⇒ Transaction receives relevant conflicts as part of service invocation reply

T1 must wait for
the commit of T2!

Non-serializable
schedules cannot
occur!

Conflict Matrix

s4
s5
s6

s4
X
–
–

s5
–
X
–

s6
–
–
X s4 T1

Log

s4 s5 s6 s4- s5- s6-

Conflict Matrix

s1
s2
s3

s1
–
–
X

s2
–
X
–

s3
X
X
–

Log

s1 s2 s3 s1- s2- s3-

s2 T1

s3 T2

s1 T1

TT11

s1 s4s2TT11 s4s3TT22

TT22 TT22

<(s3, T2), (s1, T1)><(s3, T2), (s1, T1)>

Can Türker: Towards P2P Transaction Processing 8

Detecting Cyclic Waiting SituationsDetecting Cyclic Waiting Situations

Observation: Cyclic waiting situations cannot be detected with local knowledge only

⇒ Push paths to preordered transactions

Conflict Matrix

s4
s5
s6

s4
X
–
–

s5
–
X
–

s6
–
–
X s4 T1

LogConflict Matrix

s1
s2
s3

s1
–
–
X

s2
–
X
–

s3
X
X
–

Log

s1 s2 s3 s1- s2- s3-

s2 T1

s3 T2

s1 T1

TT11

s1 s4s2TT11

TT22

<(s3, T2), (s1, T1)><(s3, T2), (s1, T1)>

s4s3TT22

TT22

s4 s5 s6 s4- s5- s6-

s4 T2

TT11

<(s4, T1), (s4, T2)><(s4, T1), (s4, T2)>

<(s3,T2), (s1,T1)><(s3,T2), (s1,T1)>

Cycle detected!
<(s3, T2), (s1, T1)><(s3, T2), (s1, T1)>

Can Türker: Towards P2P Transaction Processing 9

Solving Cyclic Waiting SituationsSolving Cyclic Waiting Situations

Rule: If cycle detected, rollback partially until cycle disappears and then restart

⇒ Peer determines conflicting service invocations to be compensated

Conflict Matrix

s4
s5
s6

s4
X
–
–

s5
–
X
–

s6
–
–
X s4 T1

LogConflict Matrix

s1
s2
s3

s1
–
–
X

s2
–
X
–

s3
X
X
–

Log

s1 s2 s3 s1- s2- s3-

s2 T1

s3 T2

s1 T1

s4s3TT22

TT22

s4 s5 s6 s4- s5- s6-

s4 T2

TT11

<(s4, T1), (s4, T2)><(s4, T1), (s4, T2)>

compcomp ss11

Peer determines
services to be
compensated

Assume T2 is
victim

(s1, T1)(s1, T1)

TT11

s1 s4s2TT11

TT22

<(s3, T2), (s1, T1)><(s3, T2), (s1, T1)>
<(s3, T2), (s1, T1)><(s3, T2), (s1, T1)>

Can Türker: Towards P2P Transaction Processing 10

Experiments: DSGT vs. S2PLExperiments: DSGT vs. S2PL

Based on IBM WebSphere

Five hosts each always running 20 active transactions

Transactions consists of 8-12 service invocations

Service durations 2 seconds

Restart delay 0-20 seconds

Can Türker: Towards P2P Transaction Processing 11

Conclusions and OutlookConclusions and Outlook

• Decentralized Concurrency Control & Recovery
– Based on “optimistic” serialization graph testing
– For service-oriented, peer-to-peer systems

• Results
– Global correctness relying only on local, incomplete knowledge
– Partial rollback reduces costs of cascading aborts
– DSGT useful for long-running transactions (outperforms 2PL)

• Outlook
– Self-adapting protocols
– Grid partitioning

	How can we support Grid Transactions?Towards Peer-to-Peer Transaction ProcessingCan Türker, Klaus Haller, Christoph Schule
	Motivation
	Concurrency Control & Recovery in the Grid
	Distributed Concurrency Control
	Our Approach
	System Model
	Preventing Incorrect Schedules
	Detecting Cyclic Waiting Situations
	Solving Cyclic Waiting Situations
	Experiments: DSGT vs. S2PL
	Conclusions and Outlook

