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Motivation

- Grid resources (peers) provide services
- Processes composed of service invocations

- Dependencies between services — transactional guarantees needed
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ETH

Concurrency Control & Recovery in the Grid

Composite services executed as multi-level transactions

No central coordinator

Semantic concurrency control & recovery
— Service level instead of data level
— Conflicts defined regarding service semantics

Long-running transactions (workflows/processes)

— Non-blocking
— Partial rollback
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Distributed Concurrency Control

- Locking Approaches
— 2PL/2PC combined with distributed deadlock detection (or timeout)
— Problem: blocking protocol

- Certifier Approaches
— Failure detection postponed until commit time
— Problem: many rollbacks (expensive in case of long-running transactions)

- Timestamp Ordering Approaches
— Entrance to system determines correct execution order on peers
— Problem: many unnecessary rollbacks

- Serialization Graph Approaches
— Problem: cycle detection & cascading rollbacks
— But costs of cycle detection not significant w.r.t. long-running transactions
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Our Approach

Observation:

A transaction may only commit if all transactions on which it depends have
committed

Approach: Decentralize serialization graph testing

- Equip transactions with necessary dependency knowledge such they can decide to
commit without a global coordinator
- Transactions require knowledge about
— directly preordered transactions
— from peers (to ensure correctness)
— transitively dependent transactions
— from transactions (to detect cyclic dependencies)

- Local, incomplete, not necessarily up-to-date knowledge
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System Model
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Preventing Incorrect Schedules

Rule: Transaction must not commit before all preordered transactions have committed

= Transaction receives relevant conflicts as part of service invocation reply
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Detecting Cyclic Waiting Situations

Observation: Cyclic waiting situations cannot be detected with local knowledge only

= Push paths to preordered transactions
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Solving Cyclic Waiting Situations

Rule: If cycle detected, rollback partially until cycle disappears and then restart

= Peer determines conflicting service invocations to be compensated

Assume T2 is
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Experiments: DSGT vs. S2PL

Based on IBM WebSphere

Five hosts each always running 20 active transactions

Transactions consists of 8-12 service invocations
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Conclusions and Outlook

- Decentralized Concurrency Control & Recovery
— Based on “optimistic” serialization graph testing

— For service-oriented, peer-to-peer systems

- Results
— Global correctness relying only on local, incomplete knowledge
— Partial rollback reduces costs of cascading aborts

— DSGT useful for long-running transactions (outperforms 2PL)

- Outlook
— Self-adapting protocols
— Grid partitioning
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