Can Turker, Klaus Haller, Christoph Schuler, Hans-Jorg Schek

ETH Zurich
Institute of Information Systems
Database Research Group

ETH .. i v tuerker@inf.ethz.ch

Motivation

- Grid resources (peers) provide services
- Processes composed of service invocations

- Dependencies between services — transactional guarantees needed

Process g 8! &5
T, @*" 33

i —(s.)
Service Interfaces e e oEE
i 5] &) B L
51 52| |50 procke
Service Instances e T o [e :
(Executed as Local Transactions) U -~ i I @:@

T 1T 1 1T 7T

Eldpendssische Technische Hochschule Zirich
ETH .. . of Technalogy Zurich Can Tirker: Towards P2P Transaction Processing 2

ETH

Concurrency Control & Recovery in the Grid

Composite services executed as multi-level transactions

No central coordinator

Semantic concurrency control & recovery
— Service level instead of data level
— Conflicts defined regarding service semantics

Long-running transactions (workflows/processes)

— Non-blocking
— Partial rollback

Eldgendssische Technlsche Hochschule Zirich
Swiss Federal Institute of Technology Zurich

»

)

Where &
How?

Conflict Detection
& Handling

Service Compensation

Can Turker: Towards P2P Transaction Processing 3

Distributed Concurrency Control

- Locking Approaches
— 2PL/2PC combined with distributed deadlock detection (or timeout)
— Problem: blocking protocol

- Certifier Approaches
— Failure detection postponed until commit time
— Problem: many rollbacks (expensive in case of long-running transactions)

- Timestamp Ordering Approaches
— Entrance to system determines correct execution order on peers
— Problem: many unnecessary rollbacks

- Serialization Graph Approaches
— Problem: cycle detection & cascading rollbacks
— But costs of cycle detection not significant w.r.t. long-running transactions

Eldgendssische Technlsche Hochschule Zirich . . .
m Swiss Federal Institute of Technology Zurich Can Turker: Towards P2P Transaction PrOCESSIng 4

Our Approach

Observation:

A transaction may only commit if all transactions on which it depends have
committed

Approach: Decentralize serialization graph testing

- Equip transactions with necessary dependency knowledge such they can decide to
commit without a global coordinator
- Transactions require knowledge about
— directly preordered transactions
— from peers (to ensure correctness)
— transitively dependent transactions
— from transactions (to detect cyclic dependencies)

- Local, incomplete, not necessarily up-to-date knowledge

Eldpendssische Technische Hochschule Zirich . . .
ETH .. . of Technalogy Zurich Can Tiirker: Towards P2P Transaction Processing s

System Model

<(s3, T2), (s1, T1)> Local conflict log

0 G Local serialization graph G
Transactions 5 @*@—'@ Transaction description | I @*@

..

Peers Services Services

Conflict Matrix Log Conflict Matrix [Nt

B HRADA

s T

T}

Eldpendssische Technische Hochschule Zirich
ETH .. Technology Zutich Can Turker: Towards P2P Transaction Processing 6

Preventing Incorrect Schedules

Rule: Transaction must not commit before all preordered transactions have committed

= Transaction receives relevant conflicts as part of service invocation reply

T, must wait for
the commit of T,

Non-serializable

<(s3, T2), (s1, T1)>

schedules cannot
occur!

4

Peer detects &
informs about
conflict

/

5, 556 |55 lse

Conflict Matrix Log

m | CIESEEES
" | CIENRSES
=) SR | ™

Eldpendssische Technische Hochschule Zirich
ETH .. . of Technalogy Zurich Can Turker: Towards P2P Transaction Processing 7

Detecting Cyclic Waiting Situations

Observation: Cyclic waiting situations cannot be detected with local knowledge only

= Push paths to preordered transactions

<(s3, T2), (s1, T1)>
<(s3, T2), (s1, T1)> <(s4, T1), (s4, T2)>

X
G\/e <(s3,T2), (s1,T> e e
160-6-6 166

Cycle detected!

EEach EEeen

5, 556 50515

Conflict Matrix Log Conflict Matrix Log

| 1Sa[S5]Ss

S1T1
s, T,
s, T, 7 7

m Eldgendssische Technlsche Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Can Turker: Towards P2P Transaction Processing 8

Solving Cyclic Waiting Situations

Rule: If cycle detected, rollback partially until cycle disappears and then restart

= Peer determines conflicting service invocations to be compensated

Assume T2 is
victim

<(s3, T2), (s1, T1)>
<(s3, T2), (s1, T1)> <(s4, T1), (s4, T2)>

N
<{ comps, e e
"

6 6 Ll
services to be

Log compensated
-

S

B

Eldpendssische Technische Hochschule Zirich
ETH .. Technology Zutich Can Tiirker: Towards P2P Transaction Processing 9

Experiments: DSGT vs. S2PL

Based on IBM WebSphere

Five hosts each always running 20 active transactions

Transactions consists of 8-12 service invocations

100%

80%

60%

40%

Relative Throughput

20%

0%

/__.__/—(l
—8—DSGT
——S2PL
r
2 3 4 5 6 7 3 9 10

Number of Services (in Thousand)

m‘ Eldgendssische Technlsche Hochschule Zirich
Swiss Federal Institute of Technology Zurich

0.25

Throughput
g
&

e

0.05

Service durations 2 seconds

Restart delay 0-20 seconds

W 52PL

WDSCT

[4, 8] [6,10] [8,12]
Transaction Length

Can Turker: Towards P2P Transaction Processing

10

Conclusions and Outlook

- Decentralized Concurrency Control & Recovery
— Based on “optimistic” serialization graph testing

— For service-oriented, peer-to-peer systems

- Results
— Global correctness relying only on local, incomplete knowledge
— Partial rollback reduces costs of cascading aborts

— DSGT useful for long-running transactions (outperforms 2PL)

- Outlook
— Self-adapting protocols
— Grid partitioning

Eldpendssische Technische Hochschule Zirich . . .
E'H Swiss Federal nstitete o[mhng1og:zu:¢h Can Turker: Towards P2P Transaction Processing 11

	How can we support Grid Transactions?Towards Peer-to-Peer Transaction ProcessingCan Türker, Klaus Haller, Christoph Schule
	Motivation
	Concurrency Control & Recovery in the Grid
	Distributed Concurrency Control
	Our Approach
	System Model
	Preventing Incorrect Schedules
	Detecting Cyclic Waiting Situations
	Solving Cyclic Waiting Situations
	Experiments: DSGT vs. S2PL
	Conclusions and Outlook

